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The dynamics of cavitation cavities are affected by the presence of a 

wall. An expression is obtained for the pressure fluctuations acting on 

the wall. 

So far the overwhelming majority of studies of the 

dynamics of cavitation cavities have been based on the 

assumption that the cavity collapses in an infinite me- 
dium. Apparently, the only exception is Khoroshev's 

theoretical study of "The Effect of a Wall on the Pro- 

cess of Collapse of Cavitation Cavities" [i] in which 

the influence of the proximity of an absolutely rigid 
wal l  on the d y n a m i c s  of a s ing le  cav i ty  is  ana lyzed  in 
the f i r s t  a p p r o x i m a t i o n .  However ,  the r e s u l t  obtained,  
which i nd i ca t e s  a r educ t i on  in the p r e s s u r e  at  the wal l  
as  c o m p a r e d  with the  e a s e  of an inf in i te  med ium,  i s  
i naccu ra t e ,  s i nce  the mot ion  of the  c e n t e r  of the bubble  
in the  d i r e c t i o n  of the wal l  dur ing  c o l l a p s e  is  not  t aken  
into account .  

The  p r e s e n t  p a p e r  r e p o r t s  the r e s u l t s  of a s tudy of the 
c o l l a p s e  of a s ing le  s p h e r i c a l  v a p o r - a i r  cav i t a t ion  c a -  
vi ty at  cons tan t  p r e s s u r e  P0 in the p r o x i m i t y  of an ab -  
so lu te ly  r i g i d  wal l  in an i n c o m p r e s s i b l e  l iquid with 
a l lowance  for  the  mot ion  of the cav i ty  t oward  the wal l .  

In o r d e r  to d e r i v e  the equat ions  of mot ion  of a ca -  
vi ty c l o s e  to a soI id  s u r f a c e  we employ  the method of 
L a g r a n g e .  As  g e n e r a l i z e d  c o o r d i n a t e s  we t ake  the r a -  
d ius  R and the d i s t a n c e  of the cav i ty  f rom the bounda ry  
b. 

The  a p p l i c a b i l i t y  of th is  g e n e r a l  method of m e c h a n -  
ics  to the mot ion  of a s p h e r e  in a l iquid was cons id -  
e r e d  by L a m b  [2]. If  K is  the  e x p r e s s i o n  for  the k ine t i c  
ene rgy  of the l iquid,  i t  m u s t  s a t i s fy  the d i f f e r e n t i a l  
equat ions  

d OK OK 
dt OR OR FR' 

d OK OK O, (1) 
dt OU Ob 

w h e r e  FR is  t he  f o r c e  ac t ing  on the s u r f a c e  of the c a v -  
i ty  in the d i r e c t i o n  of the g e n e r a l i z e d  coo rd in a t e  R.  We 
a s s u m e  tha t  the cav i ty  i s  f i l l ed  with the vapor  of the 
l iquid and a gas,  which is c o m p r e s s e d  a d i a b a t i c a l l y .  
Then, for  the a s s u m e d  mode l  of cav i ty  motion,  with a l -  
lowance for  the f o r c e s  of s u r f a c e  tension,  the  f o r c e  

F~ = 4~R2 [ P~ - 2~ (--~-)3v l ~ -  + Q . (2) 

Since  the cav i ty  moves  in an i n c o m p r e s s i b l e  l iquid,  
the flow a s s o c i a t e d  with that  mot ion  should be i r r o t a -  
t iona l  with ve loc i t y  po ten t i a l  ~ s a t i s fy ing  the so lu t ion  
of the  L a p l a c e  equat ion.  
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Fig. I. Radius-time curves for the 
c o l l a p s e  of a cav i t a t i on  c a v i t y  at  a 
wa l l (R0  = 4 r a m ) ;  1-4)  a t Q / P 0 =  
= 0.2; 1 ' - 4 ' )  0.05; 1, 1') a t  b0/R0= 
--20;  2 ,2 ' )  2; 3, 3') 1.5; 4, 4') 1. 

The  k ine t i c  e n e r g y  can be d e t e r m i n e d  f r o m  the v a l -  
ues of the ve loc i t y  po ten t i a l  and i ts  v a r i a t i o n  at  the  
boundary  s u r f a c e s  by m e a n s  of the  f o r m u l a  [2] 

= 9 s  O~ dS. (3) 
K 2 ~ On 

In this expression the derivatives of the velocity 
potential with respect to the normal ~/0n must satisfy 

the boundary conditions at the surfaces of the cavity 

and the rigid wall. In order for the flow near the wall 

to be parallel to the latter, the condition 0~/@n = 0 

(impermeability condition) must be satisfied. 

The limitations imposed on the flow by the presence 
of geometric boundaries can be satisfied by superim- 

posing on the flow a suitable combination of sources 
and dipoles. 

The total potential of the combination of sources and 

dipoles will characterize the motion of the gas cavity 

near the solid surface. The complexity of the solution 

of the problem of motion of a cavitation cavity near a 

solid wall is a consequence of the difficulties associated 

with the simultaneous satisfaction of the boundary con- 
ditions at the rigid wall and the surface of the cavity. 

The impermeability condition can be satisfied by 

using the method of images, according to which the re- 

quired velocity distribution along the wall can be en- 

sured by replacing it with imaginary sources located 

at points coinciding with the mirror images of the real 

sources behind the wall. 

In the method of images it is usually assumed that 

a radially moving cavity is equivalent to a point source 

or sink at its center. However, the flow created by 
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Fig.  2. Col lapse ~ime T (psec) and leas t  r ad ius  
Rm (mm) as funct ions of the gas content  of the cavity 
Q/P0 for a cavity col lapsing at a wall: 1-3} at R0 = 
= 4 ram; 1 ' - 3 ' )  3 ram; 1, 1') at b0AR 0 = 1.1; 2 ,2 ' )  2; 

3, 3') 20. 
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F ig .  3. D i sp l acemen t  of cavi ta t ion cavity upon col lapse  at 
a wall (1% = 4 ram) for b0/1% = 1.1 (I) and 2 (II) ; 1) at 

Q/P0 = 0.05; 2) 0.08; 3) 0.1; 4) 0.2. 



JOURNAL OF ENGINEERING PHYSICS 129 

the two sources  ( rea l  and imaginary)  cannot be cons id-  
ered r e a l  s ince  the imag ina ry  source  will c r ea t e  a 
flow ac ros s  the boundary  of the cavity.  

If the sphere  is sma l l  as compared  with i ts  d i s tance  
f rom the boundary,  this flow will  be a lmos t  un i form at 
all  points on i ts  surface,  and its d i s t r ibu t ion  wil l  be 
a lmos t  the same  as the d i s t r ibu t ion  around a sphere  
that moves  away f rom or approaches  the boundary  as 
the bubble con t rac t s  or expands. Thus,  obviously, the 
motion of the bubble can c rea te  the n e c e s s a r y  flow d i s -  
t r ibu t ion  close to the r igid  boundary .  

The potent ia l  of the flow around a spher ica l  cav i ta -  
tion cavity in t r an s l a t i ona l  motion is de t e rmined  by the 
potential ,  applied at the cen te r  of the sphere ,  of a di-  
pole with moment  or iented  along the axis of motion.  

Thus,  the total  potent ia l  of the flow around a sphe r i -  
cal cavi ty  whose d imens ions  a re  sma l l  (as compared  
with its d i s tance  f rom the solid boundary) may be 
r e p r e s e n t e d  in a coordinate  sys t em r ig id ly  t ied to the 
cavity in the form 

dR R~ dR / r + 
~=~PR dt + ~ U =  "dt- 

l 

/ 5 /  , + R  2 ]/- r ~+4b  2 - 4 b r c o s O  + 2 r ~ + 

- -  / 1.2 
1 UR 3 1 - - s i n  20  r ~+4b  ~ - 4 b r c o s O  x + 2  

x (r 2 + 4b 2 - -  4br cos @), (4) 

where  ~0z and ~0 R a re  the veloci ty potent ia ls  for uni t  
veloci ty of t r a n s l a t i o n a l  mot ion and pulsa t ion .  

In this exp res s ion  the f i r s t  and th i rd  t e r m s  d e t e r -  
mine  the potent ia l  of the source  and the dipole appIied 
at the cen te r  of the sphere  and the second and fourth 
t e r m s  the i r  re f lec t ions  in the solid wall.  

The der iva t ive  ap/0n mus t  sa t i s fy  the boundary  con- 
di t ions on the sphere  and at the wall .  These  condit ions 
may be wr i t t en  in the fo rm 

a ~  _ 1 ~ 
On an 

0% - - c o s o  0~.  
On on 

Sphere 

- - = 0  

P lane .  (5) 

= 0  

If these  condit ions a re  applied to the equation for the 
kinet ic  energy,  the i n t eg ra l s  over  the plane d i sappear ;  
as a r e s u l t  we have the exp res s ion  

K--=--y Lk dt ] 

dt ~p~ dS + % cos @ dS , (6) 

in which the i n t eg ra l s  mus t  be evaluated over the s u r -  
face of the sphere .  In de r iv ing  this  express ion  we 
made use of the equation 

~ On % dS = O, 

which is  val id  for any funct ions qo R, .r that a re  a 
solut ion of the LapLace equat ion.  Thus,  in o rde r  to ea l -  

culate the total  kinet ic  energy  it  is  n e c e s s a r y  only to 
d e t e r m i n e  the mean  values  of ~R, ~Pz and ~Pz cos | 
over  the sphere .  Af ter  the mean values  of ~o R, qPz and 
~o z cos | over the sphere  have been calculated,  the 
express ion  for the kinet ic  energy  takes the form 

K = 2 r c R 3 p [  1 + ~][t~_)_l_dR ,2 

+ + ~ R ~ p [ l q  -, 3R3-JU2.8b 3 (7) 

Subst i tut ion of the e x p r e s s i o n s  for  K and F R in  Eq. 
(1) leads to a sy s t em of d i f fe rent ia l  equat ions for the 
r ad ia l  and t r a n s l a t i o n a l  mot ions  of a sphe r i ca l  vapor -  
a i r  cavi ta t ion  cavity nea r  a r ig id  wall  

[ d2R 2b 2a Po + Q - -  
dt ~ - R(R + 2b)p P d - - - - ~ - - -  

3 b + 2 R  ( d R ) 2  1 b .U ~ 
R (R + 2b) . -t- 2R (R + 2b) + 

R dR + U, 
(R + 2b) b dt 

d ' b  3 R ( dR ) 2 3 dR U. (8) 
dF 2 b 2 - - ~  R dt 

As b - -  ~ the f i r s t  of Eqs .  (8) reduces  to the f ami l i a r  
fo rmula  for the acce l e ra t i on  of a co l laps ing  v a p o r - a i r  
cavity in an inf in i te  med ium [4] 

1~ 3 t)2 [Pd --(2a/R) - -P.  + O (Ro/R) 3v] (9) 
2 R oR 

If the dynamics  of motion os the bubble  a r e  known, i. e . ,  
i ts  r ad ius  and d i sp l acemen t  as a funct ion of t i m e ,  
the p r e s s u r e  d i s t r ibu t ion  in the su r round ing  l iquid can 
be found using the Lag range -Cauchy  equation 

P _ 1 (gradtp)2+ .0qD + P__L (10) 
p 2 at p 

In us ing  this  equation it  is n e c e s s a r y  to keep in mind 
that  0~o/0t should be d i f fe rent ia ted  for a point  whose 
posi t ion  in space is  fixed. However,  for convenience,  
the veloci ty  potent ia l  has been exp re s sed  in coordina tes  
moving at the veloci ty  U of the cen te r  of the sphere .  
There fo re ,  a point  fixed in space p o s s e s s e s  the ve loc-  
ity - U .  Thus the exp res s ion  for the de r iva t ive  8qo/0t 
takes the fo rm 

at = , - -  u (11) 
\ Ox ]~ 

where  (0~/0t)m r e l a t e s  to fixed pos i t ions  of the point  in  
the moving coord ina te  s y s t e m  and the de r iva t ive  0q)/0x 
is evaluated in the d i r ec t ion  of U. 

Eq. (10) takes the form 

P 1 
(grad r + 

p 2 

\ at - - u  
(12) 

9 

The de r iva t ive  (&p/~x)t in the equation is g iven by 

( ~ x ) t = c ~  Oq~0r sinOr 0oa~P (13) 
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Fig. 4. Pressure at wail P (db rel. 

1 atm) as a function of the ratio Q/P0 

for the collapse of a cavitation (i, 2) and 

the same relation on the assumption 

that the radial velocities and accelera- 

tions of the bubble surface are the same 

as for the collapse of a bubble in an in- 

finite medium (I', 2') at distances from 

the wall b0/R 0 = 1.2 (I, i') and 2 (2,2'). 

Substitution of the derivatives of r in the equation for 

the pressure distribution gives the following formula: 

P _ Po + 2~R 2 + ~'~ + 2~k 2 + R~R 

p p r M 

21 /;Pr, [R  + -7-R UcosO + Rr2(r--2bc~ 3 + 

~" RUr  "~ sin ~ 0 

2N M 4 

-k R U F N  (r -- 2b cos O) 
M4 

RUr ~sin 2 0 ( r - 2 b e o s O )  ]2 1 R 2 
_ _ _ _ _  sin ~ @ • 

2 N M  ~ J 2 r* 

r " RR2br R~U2brN 
Ro-u+ .+  

x [ ~- r e M 3  M4 

R~Ur ~ sin O cos O R~Ubr ~ sin 20 12 1 R 2 

J 
- ~ - - - - X  

2NM 4 N M  ~ ' 2  r 2 

x [5/~U + RUI cos O--  1 _  R_~ 3 U2 (2cose 63 - -  sin ~ O) -t- 
2 r 3 

, 3ReRU .,~ R~(/N + 

2M e 

Re/~ U [(r--  2b cos @) cos (9 -~- 2b sin e 0--', 2 ( 2b - - r  cosO)] 
+ 

M 3 

+ R3U2N [r -3 4b - -  2 (b + r) cos O - -  2b sin -~ OI + 
M 4 

2 2 2 + R3U 2 [2r sin 0 (r cos O - - 2 b ) + 2 b r  sin ~ 0 - -  

- -  r ~ sin 2 0 cos O(r---2b cos O)1 [ 2NM ~ ]-~. (14) 

T h e  c o m p l e x  r e l a t i o n  b e t w e e n  the  p r e s s u r e  and the  
a n g l e  | i s  a r e s u l t  of  the  s p h e r i c a l  a s y m m e t r y  of  t h e  

f low due to  the  p r e s e n c e  of a so l id  wal l .  I t  should  be 
no ted  tha t  th i s  p r e s s u r e  v a r i a t i o n  is  va l id  only on the  
a r t i f i c i a l  as~ ' ~mpt ion tha t  the  bubble  i s  s p h e r i c a l  in 
shape .  

To  ob ta in  a c o m p a r a t i v e  e s t i m a t e  of t h e  p r e s s u r e  
v a r i a t i o n  in the  c a s e  of c o l l a p s e  of a c a v i t y  c l o s e  to  a 
so l i d  wa l l  and in an in f in i t e  m e d i u m  we wi l l  f ind the  
v a l u e  of the  p r e s s u r e  in t h e s e  when | = 0 ~ at  a d i s -  
t a n c e  b f r o m  the  c a v i t y .  

When  |  0 ~ and r = b ,  E q .  (14) t a k e s  the  f o r m  

R3U..~ 5R2R U 2/~3U 2 
+ - -  (15) 

b ~ b:~ 

In  the  c a s e  of  an  in f in i t e  m e d i u m  the  p r e s s u r e  d i s -  
t r i b u t i o n  is  g i v e n  by the  known equa t ion  

_ p  = 2 R R + R ~  I e , t ~ + P _ ~ .  (16) 
p r 2 ,.4 9 

If we disregard the pressure component due to 
translational motion in (15) and the second term of (16), 

in the first case the pressure at a distance b from the 

cavity at point A will be twice as great as in the case 

of collapse in an infinite medium. Here it is assumed 

that the dynamics of originally identical bubbles are 

the same in both cases. In reality, in the case of col- 

lapse close to a solid surface owing to the presence of 

translational motion of the cavity and the expenditure 

of part of the original energy on this motion there is a 

decrease in radial velocity and a change in the depen- 

dence of the cavity radius on time as well as an in- 

c r e a s e  in t he  c o l l a p s e  p e r i o d .  

By s o l v i n g  the  s y s t e m  of e q u a t i o n s  of m o t i o n  (8) on 
a M - 2 0  c o m p u t e r ,  we w e r e  a b l e  to e s t i m a t e  the  d e -  
g r e e  of v a r i a t i o n  of the  p a r a m e t e r s  of bubble  m o t i o n  
in t h e  c a s e  of c o l l a p s e  at  a so l id  wa l l .  

F i g u r e  1 shows  the  r a d i u s  as a func t ion  of t i m e  fo r  
the  c o l l a p s e  of a c a v i t y  n e a r  a w a l l  a t  d i f f e r e n t  gas  

c o n t e n t s  in t he  c a v i t y  Q/P0 and d i f f e r e n t  i n i t i a l  d i s -  
t a n c e s  f r o m  the  wa l l .  

As  b - -  ~ t he  f i r s t  equa t i on  in s y s t e m  (8) g o e s  o v e r  
i n t o  the  e x p r e s s i o n  d e s c r i b i n g  the  m o t i o n  of a gas  bub-  

b l e  in an in f in i t e  m e d i u m .  T h e r e f o r e  the  c a s e  b0/R 0 = 
= 20 w i l l  c o r r e s p o n d  m o s t  c l o s e l y  to the  c o l l a p s e  of a 

c a v i t y  in an i n f i n i t e  f lu id .  
F r o m  t h e s e  c u r v e s  i t  can  be  s e e n  tha t  the  i n i t i a l  

ga s  c o n t e n t  of the  c a v i t y  and i t s  d i s t a n c e  f r o m  the  w a l l  

h a v e  an i m p o r t a n t  i n f l u e n c e  on the  p e r i o d  and m i n i m u m  
r a d i u s  of c o l l a p s e  ( F i g .  2) as  w e l l  as  on the  m o t i o n  of 
t he  bubb le  ( F i g .  3 ) .  T h e s e  p a r a m e t e r s  w i l l  h a v e  an 
e v e n  g r e a t e r  e f f e c t  on the  m a x i m u m  p r e s s u r e  i nduced  

by the  c a v i t y .  U s i n g  c a l c u l a t e d  v a l u e s  of t he  r a d i i ,  
v e l o c i t i e s ,  a c c e l e r a t i o n s ,  and d i s p l a c e m e n t s ,  we can  

d e t e r m i n e  the  m a x i m u m  p r e s s u r e  a c t i n g  on the  w a l l  
f r o m  Eq .  (14). F i g u r e  4 shows  th i s  p r e s s u r e  a s a f u n c -  
t ion  of t he  r a t i o  Q/P0 (P0 is  the  e x t e r n a l  p r e s s u r e  a s -  

s u m e d  equa l  to 1 atm) fo r  t he  c o l l a p s e  of a bubb le  

wi th  t he  i n i t i a l  d i m e n s i o n  R 0 = 4 ram.  
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At other initial dimensions the pressure distribution 

will be qualitatively similar. The broken-line curves 
in the same figure represent the maximum pressures 

acting on the wall on the assumption that the radial 

velocities and accelerations of the bubble surface are 
the same as for the collapse of a bubble in an infinite 

medium. 

At b0/R 0 = 1.2 and low gas contents the broken-line 

curve lies below the curve calculated from Eq. (14). 

This is attributable to the intense translational motion 

of the bubble toward the wall at close initial distances 

and low gas contents. As a result of this motion the 

last terms in the equation for the pressure (14) assume 

large values and determine the maximum pressure act- 

ing on the wall. 

An inspection of Fig. 4 will show that the results 

for the pressure fluctuations obtained by solving the 

problem of collapse of a bubble close to a wall without 

allowance for its motion toward it [I] do not coincide 

with the results :[or the pressure fluctuations when the 

problem is solved in our formulation. 

It is clear from Fig. 4 that at a fixed value of the 

gas content a decrease in the distance of the bubble 

from the wall leads to an increase in the pressure fluc- 

tuations at the wail, while at a fixed value of the initial 

distance of the bubble from the wall there are two re- 

gions of gas contents: in one, the region of low gas 

contents, the pressure is lower than for collapse of 

a cavitation bubble in an infinite medium. 

NOTATION 

R is the radius  of cavity;  l~ is the r a t e  of col lapse  
of the cavity;  Po is the p r e s s u r e  in liquid in the cavity 
col lapse  zone, a s s u m e d  constant  dur ing the col lapse  
p rocess ;  Q is the pa r t i a l  p r e s s u r e  of a i r  in the cavity 
at the in i t i a l  ins tant ;  Pd  is the pa r t i a l  p r e s s u r e  of 
vapor in the l iquid; p is the densi ty  of the l iquid,  ~ is 
the potent ia l  of r ad ia l  motion of the cavi ty;  ~o z, tOR a r e  
the veloci ty potent ia ls  for unit  veloci ty  of t r an s l a t i ona i  
mot ion and pulsat ion;  T is the col lapse  period,  M = 
= (r 2 § 4b 2 - 4br  cos | N = ( 1 -  sin 2 | (r2/M2))l/2; 

b is the d i s tance  of the cavity f rom the boundary,  U is 
the r a t e  of mot ion of the cavity toward the boundary,  
0 = dU/dt. 
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