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The dynamics of cavitation cavities are affected by the presence of a
wall. An expression is obtained for the pressure fluctuations acting on
the wall,

So far the overwhelming majority of studies of the
dynamics of cavitation cavities have been based on the
assumption that the cavity collapses in an infinite me-
dium. Apparently, the only exception is Khoroshev's
theoretical study of "The Effect of a Wall on the Pro-
cess of Collapse of Cavitation Cavities" [1] in which
the influence of the proximity of an absolutely rigid
wall on the dynamics of a single cavity is analyzed in
the first approximation. However, the result obtained,
which indicates a reduction in the pressure at the wall
as compared with the case of an infinite medium, is
inaccurate, since the motion of the center of the bubble
in the direction of the wall during collapse is not taken
into account.

The present paper reports the results of a study of the
collapse of a single spherical vapor-air cavitation ca-
vity at constant pressure Py in the proximity of an ab-
solutely rigid wall in an incompressible liquid with
allowance for the motion of the cavity toward the wall.

In order to derive the equations of motion of a ca-
vity close to a solid surface we employ the method of
Lagrange. As generalized coordinates we take the ra-
dius R and the distance of the cavity from the boundary
b.

The applicability of this general method of mechan-
ics to the motion of a sphere in a liquid was consid-
ered by Lamb [2]. If K is the expression for the kinetic
energy of the liquid, it must satisfy the differential
equations
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where F,, is the force acting on the surface of the cav-
ity in the direction of the generalized coordinate R. We
assume that the cavity is filled with the vapor of the
liquid and a gas, which is compressed adiabatically.
Then, for the assumed model of cavity motion, with al-
lowance for the forces of surface tension, the force
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Since the cavity moves in an incompressible liquid,
the flow associated with that motion should be irrota-
tional with velocity potential ¢ satisfying the solution
of the Laplace equation.
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Fig. 1. Radius-time curves for the
collapse of a cavitation cavity at a
wall (Rg =4 mm); 1-4) at Q/Py =
=0.2; 1'=4" 0.05; 1, 1" at by/Ry=
=20; 2,2" 2; 3,3") 1.5; 4,49 1.

The kinetic energy can be determined from the val-
ues of the velocity potential and its variation at the
boundary surfaces by means of the formula [2]
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In this expression the derivatives of the velocity
potential with respect to the normal &p/8n must satisfy
the boundary conditions at the surfaces of the cavity
and the rigid wall. In order for the flow near the wall
to be parallel to the latter, the condition 8¢/6n = 0
(impermeability condition) must be satisfied.

The limitations imposed on the flow by the presence
of geometric boundaries can be satisfied by superim-~
posing on the flow a suitable combination of sources
and dipoles.

The total potential of the combination of sources and
dipoles will characterize the motion of the gas cavity
near the solid surface. The complexity of the solution
of the problem of motion of a cavitation cavity near a
solid wall is a consequence of thedifficulties associated
with the simultaneous satisfaction of the boundary con-
ditions at the rigid wall and the surface of the cavity.

The impermeability condition can be satisfied by
using the method of images, according to which the re-
quired velocity distribution along the wall can be en-
sured by replacing it with imaginary sources located
at points coinciding with the mirror images of the real
sources behind the wall.

In the method of images it is usually assumed that
a radially moving cavity is equivalent to a point source
or sink at its center. However, the flow created by
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Fig. 2. Collapse time T (usec) and least radius
Rm (mm) as functions of the gas content of the cavity
Q/P for a cavity collapsing at a wall: 1-3) at Ry =
=4 mm; 1'-3" 3 mm; 1, 1" at by/Ry = 1.1; 2,27 2;
3,3 20.
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Fig. 3. Displacement of cavitation cavity upon collapse at
a wall {Ry = 4 mm) for by/Ry = 1.1() and 2 (ID; 1 at
Q/P; = 0.05; 2) 0.08; 3) 0.1; 4) 0.2.
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the two sources (real and imaginary) cannot be consid-
ered real, sinee the imaginary source will create a
flow across the boundary of the cavity.

If the sphere is small as compared with its distance
from the boundary, this flow will be almost uniform at
all points on its surface, and its distribution will be
almost the same as the distribution around a sphere
that moves away from or approaches the boundary as
the bubble contracts or expands. Thus, obviously, the
motion of the bubble can create the necessary flow dis-
tribution close to the rigid boundary.

The potential of the flow around a spherical cavita—
tion cavity in translational motion is determined by the
potential, applied at the center of the sphere, of a di-
pole with moment oriented along the axis of motion.

Thus, the total potential of the flow around a spheri-
cal cavity whose dimensions are small (as compared
with its distance from the solid boundary) may be
represented in a coordinate system rigidly tied to the
cavity in the form
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where ¢z and ¢y are the velocity potentials for unit
velocity of translational motion and pulsation.

In this expression the first and third terms deter-
mine the potential of the source and the dipole applied
at the center of the sphere and the second and fourth
terms their reflections in the solid wall.

The derivative 8p/0n must satisfy the boundary con-
ditions on the sphere and at the wall. These conditions
may be written in the form
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If these conditions are applied to the equation for the
kinetic energy, the integrals over the plane disappear;
as a result we have the expression
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in which the integrals must be evaluated over the sur-
face of the sphere. In deriving this expression we
made use of the equation
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which is valid for any functions ¢, ¢4 that area
solution of the Laplace equation. Thus, inorder tocal-
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culate the total kinetic energy it is necessary only to
determine the mean values of ¢g, ¢, and ¢, cos @
over the sphere. After the mean values of ¢R. ¢, and
@y cos ® over the sphere have been calculated, the
expression for the kinetic energy takes the form
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Substitution of the expressions for K and Fg in Eq.
(1) leads to a system of differential equations for the
radial and translational motions of a spherical vapor-
air cavitation cavity near a rigid wall
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As b — < the first of Eqs. (8) reduces to the familiar
formula for the acceleration of a collapsing vapor-air
cavity in an infinite medium [4]
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If the dynamics of motion of the bubble are known, i.e.,
its radius and displacement as a function of time,
the pressure distribution in the surrounding liquid can
be found using the Lagrange-Cauchy equation
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In using this equation it is necessary to keep in mind
that 9¢ /6t should be differentiated for a point whose
position in space is fixed. However, for convenience,
ihe velocity potential has been expressed in coordinates
moving at the velocity U of the center of the sphere.
Therefore, a point fixed in space possesses the veloc-
ity ~U. Thus the expression for the derivative 9¢/0t
takes the form
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where (8¢ /01) oy relates to fixed positions of the point in
the moving coordinate system and the derivative 9¢/0x
is evaluated in the direction of U.

Eq. (10) takes the form
P 1
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The derivative (8¢/0x)t in the equation is given by

(a_(P) =¢c0os O a(P
0x $

13)
or r 06 (




130

~2
\\.\
A\

.. \‘
\\L'\ -
—~
| z ==

05 af a5 a/P,

Vif
/]

30

19

Fig. 4. Pressure at wall P (db rel.

1 atm) as a function of the ratio Q/Py
for the collapse of a cavitation (1, 2) and
the same relation on the assumption
that the radial velocities and accelera-
tions of the bubble surface are the same
as for the collapse of a bubble in an in-
finite medium (1, 2" at distances from
the wall by/Rg = 1.2 (1,1*) and 2 (2,2Y).

Substitution of the derivatives of ¢ in the equation for
the pressure distribution gives the following formula:
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The complex relation between the pressure and the
angle © is a result of the spherical asymmetry of the
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flow due to the presence of a solid wall. It should be
noted that this pressure variation is valid only on the
artificial ass imption that the bubble is spherical in
shape.

To obtain a comparative estimate of the pressure
variation in the case of collapse of a cavity close to a
solid wall and in an infinite medium we will find the
value of the pressure in these when ® = 0° at a dis-
tance b from the cavity.

When ® = 0° and r = b, Eq. (14) takes the form
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In the case of an infinite medium the pressure dis-
tribution is given by the known equation
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If we disregard the pressure component due to
translational motion in (15) and the second term of (16),
in the first case the pressure at a distance b from the
cavity at point A will be twice as great as in the case
of collapse in an infinite medium. Here it is assumed
that the dynamics of originally identical bubbles are
the same in both cases. In reality, in the case of col-
lapse close to a solid surface owing to the presence of
translational motion of the cavity and the expenditure
of part of the original energy on this motion there is a
decrease in radial velocity and a change in the depen-
dence of the cavity radius on time as well as an in-
crease in the collapse period.

By solving the system of equations of motion (8) on
a M-20 computer, we were able to estimate the de-
gree of variation of the parameters of bubble motion
in the case of collapse at a solid wall.

Figure 1 shows the radius as a function of time for
the collapse of a cavity near a wall at different gas
contents in the cavity Q/P; and different initial dis-
tances from the wall.

As b — = the first equation in system (8) goes over

‘into the expression describing the motion of a gas bub-

ble in an infinite medium. Therefore the case by/Ry =
= 20 will correspond most closely to the collapse of a
cavity in an infinite fluid.

From these curves it can be seen that the initial
gas content of the cavity and its distance from the wall
have an important influence on the period and minimum
radius of collapse (Fig. 2) as well as on the motion of
the bubble (Fig. 3). These parameters will have an
even greater effect on the maximum pressure induced
by the cavity. Using calculated values of the radii,
velocities, accelerations, and displacements, we can
determine the maximum pressure acting on the wall
from Eq. (14). Figure 4 shows this pressure asafunc-
tion of the ratio Q/Py (P, is the external pressure as~-
sumed equal to 1 atm) for the collapse of a bubble
with the initial dimension Ry = 4 mm.
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At other initial dimensions the pressure distribution
will be gualitatively similar. The broken-line curves
in the same figure represent the maximum pressures
acting on the wall on the assumption that the radial
velocities and accelerations of the bubble surface are
the same as for the collapse of a bubble in an infinite
medium-

At by/Ry = 1.2 and low gas contents the broken-line
curve lies below the curve calculated from Eq. (14).
This is attributable to the intense translational motion
of the bubble toward the wall at close initial distances
and low gas contents. As a result of this motion the
last terms in the equation for the pressure (14) assume
large values and determine the maximum pressure act-
ing on the wall.

An inspection of Fig. 4 will show that the results
for the pressure fluctuations obtained by solving the
problem of collapse of a bubble close to a wall without
allowance for its motion toward it {1] do not coincide
with the results for the pressure fluctuations when the
problem is solved in our formulation.

1t is clear from Fig. 4 that at a fixed value of the
gas content a decrease in the distance of the bubble
from the wall leads to an increase in the pressure fluc-
tuations at the wall, while at a fixed value of the initial
distance of the bubble from the wall there are two re-
gions of gas contents: in one, the region of low gas
contents, the pressure is lower than for collapse of
a cavitation bubble in an infinite medium.

NOTATION

R is the radius of cavity; R is the rate of collapse
of the cavity; Pg is the pressure in liquid in the cavity
collapse zone, assumed constant during the collapse
process; @ is the partial pressure of air in the cavity
at the initial instant; P is the partial pressure of
vapor in the liquid; p is the density of the liquid, ¢ is
the potential of radial motion of the cavity; ¢,, ¢p are
the velocity potentials for unit velocity of translationai
motion and pulsation; T is the collapse period, M =
= (2 + 4bf — 4br cos @ /%; N= (1— sin’ ® @Y/M)Y/?;
b is the distance of the cavity from the boundary, U is
the rate of motion of the cavity toward the boundary,

U = dU/dt.
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